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Abstract 

 
Most modern processors provide a supervisor mode that is intended to run privileged operating 
system services that provide resource management transparently or otherwise to non-privileged 
code. Although a lot of research has been conducted into exploiting bugs in user mode code for 
privilege escalation within the operating system defined boundaries as well as what can be done 
if one has arbitrary supervisor access (typically related to modern root kit work), not a great deal 
of research has been done on the interface between supervisor and non-supervisor, and potential 
routes from one to the other. 
 
The biggest problem arises when trying to protect the kernel from itself - for example, under the 
IA32 architecture implementation of Windows, the distinction between user mode and kernel 
mode from the user mode perspective is easily enforced through hardware based protection. 
However, as the kernel is running as supervisor, how does the kernel make distinctions between 
what it should be accessing? This would be irrelevant if the supervisor was not exposed to 
interaction with supervisee; but that would defeat the purpose of having a kernel. 
 
This paper is focused on Windows and the Intel Architecture, and will briefly outline the current 
supervisor boundaries provided. Different attack vectors, along with relevant examples, will be 
provided to demonstrate how to attack the supervisor from the perspective of the supervised, as 
well as an outline of what possible architectures could be used to mitigate such attacks, such as 
the research operating system Singularity. 
 
Keywords: kernel security, windows nt, reverse engineering, windows driver framework, 
virtualization 
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1 – Introduction 

On any operating system that provides a distinction between user and supervisor mode 
functionality, the kernel will provide a powerful, yet restricted, set of services to manage hardware 
resources as well as potentially perform internal operating system management. 

 
Modern kernels, for example Minix [17], Singularity [14], or Symbian [26], tend to only provide 
hardware management from supervisor mode, with the remaining services being provided by 
subsystems running in user mode. Such microkernels are written in order to improve security by 
reducing the attack surface provided by the supervisor code, as well as allow greater flexibility for 
software design by reducing the architectural constraints placed on developers. 
 
This is in distinction to monolithic kernels such as UNIX [27] and Windows NT [19], though NT is 
often referred to as a ‘hybrid kernel’. Monolithic kernels run entirely in supervisor mode, and 
provide all operating system management functionality at that level. Windows NT could be 
described as a ‘hybrid kernel’ as some components, though strongly tied to the kernel (especially 
the user mode subsystems such as CSRSS and LSASS), are run in user mode. Though this can 
be utilized to provide a broad framework for kernel development thus potentially speeding up 
kernel module development, it does greatly increase the potential attack surface available to a 
malicious user to abuse the code running in supervisor mode. 
 
Given this, what can we hope to gain from either modifying kernel data, or running arbitrary code 
in supervisor mode? This is almost entirely beyond the scope of this paper, but not only has a 
great deal of research has been conducted into ([5], [28]) root kit technology, but such attack 
vectors could be leveraged to subvert digital rights management systems, perform kernel hacks 
such as replacing the Blue Screen of Death with a bitmap, or otherwise enhance the functionality 
of the kernel. 
 
This paper is focused on the Windows NT architecture and the Intel architecture [7]; as such, the 
focus will be on what vectors there are for attacking the kernel, what tools and methods are 
available to investigate any potential attacks, and what mechanisms are in place, or could be put 
in place, to try and prevent them. 



2 

2 – Attack vectors 

Given the architectural structure of Windows NT (outlined in Appendix A), what are the potential 
methods that could be employed to switch from user to supervisor mode? 

2.1 – Direct from user mode 
Although not an obvious attack, there are potential avenues from user mode to supervisor mode 
that do not involve any operating system APIs or interfaces. 
 
Firstly, the operating system may have been designed in such a way that it is possible to do this 
by not utilizing the protection functionality provided by the hardware. The best example of this is 
Windows 95, the first operating system written by Microsoft to take advantage of the protected 
mode functionality provided by the contemporary x86 processors. It does not protect the 
descriptor tables, unlike NT, and they are writeable and located within the user portion of the 
address space. Thus, any user mode code that wishes to execute arbitrary code as supervisor 
just needs to add an entry to the LDT, GDT, or IDT and then execute the requisite interrupt or far 
call. 
 
There are no publicly known issues like this, such as supervisor memory and control structures or 
hardware protection functionality being accessible to user mode, for Windows NT. 
 
Aside from that, a theoretically possible approach could be provided by bugs in the CPU itself. 
Both Intel ([8] for example) and AMD ([1] for example) now publish lists of CPU errata for their 
processor lines, though there is no publicly known way of leveraging any of these bugs to allow 
escalation from user to supervisor. Even so, despite the vagueness of the descriptions for the 
errata, there are some interesting possibilities for certain processors: 
 
Erratum 64 for AMD Athlon 64 and Opteron processors - Real Mode RDPMC with Illegal 
ECX May Cause Unpredictable Operation 
 

“However, if the RDPMC instruction is executed in real mode with a specific illegal 
value of ECX = 9, then the processor may incorrectly enter the GP fault handler as if it 
were in 32-bit mode.” 

 
The author has not currently had the resources to experiment with this erratum, though it does 
provide some interesting possibilities: is the processor just running in 32-bit real mode, or is it 
running in protected mode? If it is running in protected mode, which segment is it running in, thus 
what is the Current Privilege Level of the executing code? 
 
Erratum AK92 for Intel® Core™2 Extreme Quad-Core Processors - Invalid Instructions May 
Lead to Unexpected Behavior 
 

“Invalid instructions due to undefined opcodes or instructions exceeding the maximum 
instruction length (due to redundant prefixes placed before the instruction) may lead, 
under complex circumstances, to unexpected behavior.” 

 
A typically vague description, though the author presumes that instructions are subsequently not 
decoded as expected due to the instruction pointer no longer pointing to the expected instruction 
boundaries, though this has not been verified 
 
There are several other similar errata for both AMD and Intel processor lines, usually involving 
unexpected processor behaviour or unexpected memory access. There is obviously the potential 
for information disclosure in such cases, but the conditions necessary to trigger such situations in 
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the errata studied thus far are either undefined, or require the processor to be executing in 
supervisor mode. 

2.2 – Public APIs 
Beyond the ABI interfaces outlined in Appendix A, which are supposed to be reserved for internal 
operating system use, the NT OS must provide APIs that provide higher level programmatic 
access to the kernel, at the very least to load and unload kernel modules. 
 
As such APIs allow a user to load arbitrary code to be executed in supervisor mode, such APIs 
should have some required privilege level necessary for them to be invoked – otherwise any 
unprivileged user can take full control of the machine. Under NT, driver loading functionality is 
restricted to users with SeLoadDriverPrivilege (administrators and system processes); a user with 
SeDebugPrivilege may then be able to access such functionality by injecting code into a system 
or administrator process. 
 
The documented Win32 APIs involved are CreateService, StartService, and StopService; though 
these will not necessarily involve the loading of a kernel module. The documented NT APIs 
provided are ZwLoadDriver and ZwUnloadDriver (documented in the Driver Development Kit), 
and are used internally by the Service Control Manager to load and unload kernel modules for 
kernel mode services. 
 
An additional mechanism introduced for 64-bit Vista is mandatory driver signing [13], so that 
unsigned kernel modules cannot be loaded into the kernel unless signing is disabled. 
 
Beyond that, any API that results in information being passed over to supervisor code for 
processing creates a potential attack vector. Thus, device drivers may increase the attack surface 
through kernel mode callbacks, or interfaces exposed to user mode (for example through 
DeviceIoControl, FilterSendMessage, or ExtEscape). This will be discussed further below.  

2.3 – Undocumented APIs 
A large number of symbols exported by both user mode and kernel mode libraries are 
undocumented, and designed for internal operating system use. Consequently, there is always 
the possibility of an undocumented function or object providing greater access to kernel mode 
functionality and structures. 
 
The three most prominent examples are ZwSystemDebugControl, ZwSetSystemInformation and 
the PhysicalMemory device interface; over recent service packs and versions of the NT OS, such 
as service pack 1 for Windows Server 2003 and Windows Vista, have attempted to restrict 
access to these APIs. Whereas previously usage of ZwSystemDebugControl, which can be used 
to read and write to arbitrary kernel memory amongst other things, was only restricted to users 
with SeDebugPrivilege, Vista checks that the OS has been booted with the kernel debugger 
enabled (checking KdPitchDebugger), before allowing access, with only the creation of a triage 
dump being available otherwise. 
 
Debugging functionality provided by the internal kernel debugger has also been restricted, and is 
no longer directly available to user mode processes. The debugging functionality has been 
moved into KdSystemDebugControl which is exported by the NT kernel. This functionality is 
made available to WinDbg for local kernel debugging on Vista via a device driver that WinDbg 
drops and loads, otherwise it relies on the older ZwSystemDebugControl. 
 
Calling ZwSetSystemInformation using a value of 26 for SystemInformationClass, which has most 
popularly been referred to as SystemLoadAndCallImage, SystemLoadImage, and 
SystemLoadGdiDriverInformation, allows a user with the SeLoadDriverPrivilege to load a driver 
through an alternate means than the ZwLoadDriver API. The final symbolic name suggests the 
use of this API to provide support for loading kernel components of display drivers. 
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Physical memory is accessible via the ‘Device\PhysicalMemory’ file object; until Windows 
Server 2003 Service Pack 1 this was accessible from user mode, allowing a user mode 
application to map in physical memory, manually do the translation from virtual to physical 
address, and then modify arbitrary areas of kernel memory (such as descriptor tables). 
 
Although such undocumented functionality is available more freely in older versions of NT, the 
coding best practices introduced under the Secure Windows Initiative at Microsoft suggest that 
the addition of such APIs in the future is unlikely without putting equivalent restrictions on their 
access. However, additional exported symbols and interfaces that are not documented in new NT 
OS releases are always worth investigation. 

2.4 – Architectural flaws 
A distinction will be made between architectural flaws, which will typically involve the breaking of 
defined security layers, and bugs in the code (discussed in the next section) due to the nature of 
the investigation used to find them, and the potential differences in exploitation. 
 
A typical example of an architectural flaw would be an antivirus disinfection engine that contained 
functionality to modify the contents of arbitrary memory locations. This would be particularly 
useful for modifying malicious code to disable a watchdog function, or make alterations to data 
structures that have been modified by a kernel mode root kit. However, if no usage restrictions 
are placed on the access to this functionality, such as that it can only be used by a specific user, 
or requires SeDebugPrivilege or SeTcbPrivilege, then an unprivileged user can use it to modify 
arbitrary areas of kernel memory, and either modify kernel mode structures directly from user 
mode such as PsLoadedModuleList, or add an entry to a descriptor table and then run arbitrary 
code in kernel mode. 
 
Architectural issues tend to be easier to recognize both in source code and in disassembled 
binaries, and exploitation tends to be easier than for bugs as this is intentional functionality 
provided by the kernel code, rather than a buffer overflow, for example; on the other hand, 
architectural flaws can be more difficult to fix – for the example above, either the AV disinfection 
must add suitable access restrictions (which is still fairly trivial), or the disinfection process itself 
must be redesigned and reimplemented. 

2.5 – Bugs and their exploitation 
Any situation where arbitrary user controlled input is processed by trusted code presents the 
possibility of the input being malformed in a specific way such that the code behaves in ways that 
were not intended (in distinction to architectural flaws). Any supervisor mode interface exposed to 
user mode must have robust input validation. 
 
The NT kernel has only 24k reserved for the kernel stack, making exploiting buffer overflows 
more difficult due to the lack of space, and the decreased likelihood of arbitrary size buffers being 
used on the stack. Instead, it is more likely for pool memory to be allocated. This raises an 
interesting problem – pool memory is used to store a variety of object data, as well as IRPs and 
data buffers for the various kernel modules loaded and executing, thus providing a wide variety of 
potential pointers to overwrite, such as in a DriverObject. 
 
However, the author is not aware of any work similar to [25] for kernel pool memory allocation to 
try and deterministically control where any allocated pool memory is placed and what data and 
objects are stored after it to allow a more controlled attempt at a function pointer overwrite; 
additionally, the modification of arbitrary kernel data within pool memory may leave the operating 
system in such an unstable state that the kernel will crash before the overwritten pointer is 
dereferenced. However, if such an attack triggering a bugcheck is available via a remote interface 
then it still allows a denial-of-service attack. 
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Bugs that are easier to exploit are those that allow controllable data overwrites and pointer 
derefences. As memory can be allocated at a virtual address of 0 in Windows NT by using 
ZwAllocateVirtualMemory, either dereferencing a null pointer or overwriting a pointer with null can 
easily allow arbitrary code to be executed. Additional potential targets are entries in the descriptor 
tables, such as interrupt gate entries in the IDT: 
 
typedef struct _KIDTENTRY { 
  USHORT  Offset 
  USHORT  Selector 
  USHORT  Access 
  USHORT  ExtendedOffset 
} KIDTENTRY, *PKIDTENTRY; 

 
ExtendedOffset is the high word of the address of the entry point for the given interrupt. Zeroing 
this will cause the interrupt to start executing somewhere within the first 64Kb of memory in the 
current process. Seeing as it is easy to determine where the IDT is located from user mode, as 
the sidt instruction is neither protected nor privileged, that such interrupts as 4 (interrupt on 
overflow) and 5 (bound error) being rarely if ever used under normal operating system usage, and 
that interrupt 4 has a DPL of 3 so can be accessed from user mode without generating an access 
violation, modifying the IDT presents a promising target under systems where the IDT is not 
protected. 
 
Other pointers within kernel modules can be deterministically located by loading the target 
module into a user mode process with LoadLibraryEx and specifying a flag of 
DONT_RESOLVE_DLL_REFERENCES so none of the module code is executed. Entry points 
can then be heuristically scanned for references to target pointers. Obviously both this and the 
above technique require that code already be running on the target machine. A remote exploit 
allowing direct arbitrary code execution in the kernel would be difficult to make work, especially 
reliably, though not impossible. 
 
It is also worth bearing in mind that even though the NT kernel itself has received a fairly 
thorough examination, it is not itself without bugs that may be directly exposed to user mode 
applications, or indirectly via some other kernel code. Four relevant examples have been 
provided in Appendix C. 

2.6 – Subverting operating system initialization 
There has been recent work on subverting the boot process of the NT OS from a variety of 
different vectors ([18], [9], [4]), mostly related to root kit research, so this topic will only be briefly 
discussed. 
 
Although the attacks may be complicated, the essence of the attack is simple – during the boot 
process, before the operating system has at least partially initialized itself, if at any point the 
control flow can be changed to that of user controlled code then the user has arbitrary and 
unrestricted access to the operating system before it has had a chance to initialize and properly 
segregate itself from arbitrary user code. Consequently, as in eEye’s BootRoot, arbitrary 
modifications can be made to the operating system, as also outlined in an attack against 
PatchGuard on 64-bit versions of NT [23]. 

2.7 – Modifying kernel modules on disk 
The author is unaware of any malware, or malware related research, that has investigated either 
modifying kernel modules to allow kernel mode DLL injection or the infection of kernel modules. 
 
Although there are measures to avoid the tampering with of kernel modules, such as driver 
signing, checksum verification for the module binary, and Windows File Protection and Windows 
Resource Protection, all these technologies can be circumvented in some manner (though 
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administrator privileges, and a reboot, may be required). So, presuming a kernel module has 
been modified, and this may include the display drivers in the Windows System folder, how can 
this be leveraged to run arbitrary user code? 
 
Firstly, the standard viral infection methods are available. Though the driver’s entry point is called 
when it is loaded, thus allowing entry point infection, it is much harder to programmatically 
determine what areas of the code will be executed and when, thus making mid-infecting 
techniques more difficult. The only real difference between this situation and the one for user 
mode viruses is in the APIs available to the viral code; though kernel mode viral code has a much 
wider array of potential targets to hook file system operations to infect files, or use root kit 
techniques. 
 
Beyond that, kernel modules are standard PE files with in Import Directory (if they import any 
symbols). Although drivers typically only link with the NT kernel, or with win32k or videoprt for 
display drivers and their miniports, the NT kernel supports ‘kernel mode DLLs’ more formally 
referred to as export drivers. Normal drivers can be statically linked to export drivers, and the 
dependencies of any driver are recursively resolved during the image loading process. The entry 
point of an export driver is not executed, and as such it does not need to contain any code and is 
only needed as the build process requires that function to be present. However, if it exports 
DllInitialize then that will be called to allow whatever initialization the driver requires to be carried 
out. The unload routine is DllUnload. 
 
Thus standard PE file modification techniques can be used to modify a device driver’s Import 
Directory to add an entry for a user-created export driver, that will then be loaded and DllInitialize 
executed. However, the standard restrictions on kernel modules still apply for export drivers, so 
on 64-bit Windows Vista, it will need to be signed. 

2.8 – Hardware 
As the majority of kernel mode drivers are designed to actually allow the interfacing of user mode 
or other kernel mode code to actual hardware, then the hardware itself provides a potential attack 
vector. The Windows Driver Kit specifies the Windows Driver Framework as being suitable for the 
following device classes: 

 

� IEEE 1394 client drivers 
� ISA, PCI, PCMCIA, and secure digital (SD) devices 
� NDIS protocol drivers 
� NDIS WDM drivers 
� SoftModem drivers 
� Storage class drivers and filter drivers 
� Transport driver interface (TDI) client drivers 
� USB client drivers 
� Winsock client drivers 

 
The most interesting drivers are those that drive hardware that allows remote access, so 
particularly NDIS, modem, TDI and Winsock client drivers. 
 
The primary methods for a driver to communicate with the underlying hardware are via port I/O 
and through memory mapped I/O. The Plug and Play manager enumerates devices and then 
calls the appropriate AddDevice or EvtDriverDeviceAdd routine in the driver that will drive the 
hardware; though the system libraries provided for video port, SCSI port, and NDIS drivers will 
perform the initialization. Depending upon the hardware resource to be driven, the resource can 
either be accessed by mapping the hardware on a given bus into the virtual address space by 
using MmMapIoSpace with the physical address of the resource provided by the PnP manager, 
or can be accessed programmatically with functions which are just wrappers for in and out. 
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Communications from hardware back to the given driver are carried out via interrupt, allowing the 
hardware to signal that it has entered a specific state (such as having processed a request). 
Interrupts are serviced by a driver provided Interrupt Service Routine. Windows NT abstracts from 
the hardware interrupt architecture provided with x86 and x64 processors and allows multiple 
ISRs to be chained to the same internal interrupt vector. Consequently, direct modification of the 
IDT is ill-advised for general purpose driver coding. ISRs are registered using IoConnectInterrupt, 
IoConnectInterruptEx or WdfInterruptCreate. Thus, anyone auditing either source code or a 
compiled binary can quickly locate the entry points into the binary from a hardware point of view, 
and then trace through to see how the data is processed. 
 
In cases where hardware is being used as the attack vector, fuzzing can be of great use; 
however, the appropriate hardware needs to be present to provide the vector. Consequently, a 
virtual machine is of little use in such testing, and fuzzing on a non-virtual machine raises the 
issue of automating the process, particularly if bugs are found which will result in a bugcheck. 



8 

3 – Tools for the job 

Given the above outline of the relevant kernel architecture, and the outlined potential attack 
vectors, the following section will describe tools useful in the assessment of kernel mode code. 
This is far from a complete list, and serves only to highlight useful and tools and techniques. 

3.1 – Static analysis 
Depending on what is available for scrutiny, there are at least one, possibly two essential 
resources for static analysis of kernel mode code. With access to source code then besides a 
reasonable IDE or source browser all that is needed is the current version of the Windows Driver 
Kit, not only for the documentation but the header files and the function prototypes, structures, 
and enumerations contained therein. 
 
3.1.1 – Static Driver Verifier 
An interesting tool from Microsoft that can also be used in this situation is the Static Driver Verifier 
[16] – with source and a WDM compliant driver, SDV can be used to execute the code and test 
for a set of pre-defined rules that can check code correctness with respect to seven different 
categories (such as IRP handling, IRQ levels, PnP functions). The SDV is state based, and rules 
it uses may include one or more of the following: state variables, actions that can change state, 
conditional expressions, and assignment statements. 
 
This allows a quick assessment of certain aspects of the correctness of the driver, though there 
are limitations. Although some complex conditions are tested for, including certain race 
conditions, recursion, and synchronization issues, there is no rule-based testing for the more 
sophisticated issues related to data processing (presumably not least because of the intractable 
nature of such a task). Consequently, bugs leading to arbitrary code execution will require a more 
typical code review. 
 
3.1.2 – PREFast 
It is also worth considering PREFast [15], another static analysis tool provided by Microsoft for 
driver development. It also requires source code to be available, but detects different classes of 
errors than the Static Driver Verifier, such as memory leakage, dereferencing NULL pointers, the 
use of uninitialized variables, buffer overflows, excessive kernel stack use, type checking and 
type mismatches, as well as certain code correctness rules. Given the types of issues identified 
by PREFast, any coding errors picked up are more likely to lead to arbitrary code execution than 
those found by SDV. However, it is still not a fool-proof method to find all potential issues, and 
can be prone to false positives. 
 
3.1.3 – Disassembler 
It may be a case of black box research into an attackable driver exposed to the outside world via 
some piece of hardware, such as a Bluetooth driver. In these situations, there are two options – 
fuzz, or fire up a disassembler. Fuzzing will be dealt with in the following subsection. The author 
will make no recommendations as to which disassembler to use, and will leave that entirely up to 
the discretion of the reader. 
 
Given the outline architectural information above, and some good reference material ([22], [11]), 
then it is not difficult to load up the binary and take a look. Depending on the version of the 
DDK/WDK the driver was built with (presuming it was) the entry point code will differ. For binaries 
compiled with older versions of the DDK, or with /GS turned off, the driver will start at user code; 
for the Windows 2003 DDK and the WDK /GS is turned on by default, so some stub code will be 
present at the entry point to set up stack protection before jumping to the user code. For the 
WDK, having built a KMDF driver, a library code wrapper is present that will initialize WDF and 
then call either the /GS stub (if enabled), or directly to the user code. Symbolically, these different 
entry points are referred to as DriverEntry, GsDriverEntry and FxDriverEntry. 
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As a quick example, the following is the start of the EvtIoDeviceControl routine from the RamDisk 
driver from the Kernel Mode Driver Framework examples from version 6000 of the WDK. This 
routine is added to an I/O queue created in the driver’s EvtDeviceAdd routine. 
 
RamDiskEvtIoDeviceControl proc near 

 

 var_8         = dword ptr -8 

 var_4         = dword ptr -4 

 Queue         = dword ptr  8 

 Request       = dword ptr  0Ch 

 IoControlCode = dword ptr  18h 

 

         mov     edi, edi 

         push    ebp 

         mov     ebp, esp 

         push    ecx 

         push    ecx 

         mov     edx, [ebp+ Queue] 

         mov     ecx, WdfDriverGlobals 

         and     [ebp+var_4], 0 

         push    ebx 

         push    esi 

         push    edi 

         push    off_10AA0 

         mov     edi, 0C0000010h 

         call    WdfFunctions.WdfObjectGetTypedContextWorker 

         mov     esi, [eax] 

         mov     eax, [ebp+IoControlCode] 

         sub     eax, 70000h                                 ; Switch the IOCTL 

         jz      loc_1055E 

         sub     eax, 24h 

         jz      loc_1058D 

         sub     eax, 3FE0h 

         jz      short loc_104DE                             ; Check for 0x704004 

         sub     eax, 7FCh 

         jz      loc_1058D 

         jmp     loc_1058F                                   ; IOCTL not handled, complete the request 

 ; --------------------------------------------------------------------------- 

 loc_104DE:                 

         mov     ebx, [esi]                                  ; Process IOCTL 0x704004 

         push    20h 

         pop     eax 

         lea     ecx, [ebp+var_8] 

         push    ecx 

         lea     ecx, [ebp+Queue] 

         push    ecx 

         push    eax 

         push    [ebp+Request] 

         mov     [ebp+var_4], eax 

         push    WdfDriverGlobals 

         call    WdfFunctions.WdfRequestRetrieveOutputBuffer ; Get the output buffer 

         mov     edi, eax 

 
A more detailed example is provided in Appendix B. 

3.2 – Dynamic analysis 
Dynamic analysis can be considerably less of an effort than reverse engineering a driver for bugs, 
and can easily help pick up issues that can be missed through static analysis. However, there is 
still a lot of work that could be done toward improving and automating dynamic code analysis. 
 
3.2.1 - WinDbg 
Whether just debugging kernel mode code, or analyzing the crash dump from a successful 
attempt at fuzzing some code, the most useful kernel debugger for Windows NT is Microsoft’s 
WinDbg. There are other kernel mode debuggers available such as SoftICE, Syser, and RR0D, 
though they unsurprisingly suffer compatibility issues as well as having significantly less 
functionality when compared to WinDbg. 
 
Although WinDbg does not necessarily have the most user friendly interface, provided with 
symbols the local kernel debugging option is useful for gaining a quick look at the current kernel 
configuration and internal data structures; remote kernel debugging is fairly quick and convenient 
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over FireWire or USB without the stability issues raised by genuine local kernel debugging; 
debugging kernel code that does not require associated hardware is made considerably more 
convenient by using a named pipe for the debugger connection and debugging a virtual machine 
running in either Virtual PC or VMWare; and finally, the automated crash dump analysis created 
by entering !analyze -v  can greatly speed up the assessment of kernel mode crashes and 
their exploitability. 
 
There is a great deal of documentation on WinDbg, not just within the install package but also on 
the associated section of Microsoft’s website [12]. 
 
3.2.2 – The Driver Verifier 
The Driver Verifier is functionality built in to the NT kernel to enable stress testing of driver code in 
a live environment. It is similar in principle to the user mode Application Verifier, though whereas 
that is to some extent configurable with respect to what functions are detoured, and what the 
detours perform, the Driver Verifier is hard coded to detour specific functions to other 
predetermined functions that will allow the verifier to provide a hostile environment to the target 
driver. 
 
Driver verification is managed through ZwSetSystemInformation with system information classes 
40 (add driver) and 41 (remove driver) under Windows XP SP2. Internally, provided the user has 
SeDebugPrivilege then MmAddVerifierEntry or MmRemoveVerifierEntry are called as 
appropriate, whereby the name of the driver to be verified is added to or removed from a linked 
list named MiSuspectDriverList – drivers are only added to this list if they have not already been 
added and have not already been loaded. 
 
When a driver is loaded, MiApplyDriverVerifier is called from MmLoadSystemImage; this checks if 
NT is configured to verify random drivers, all drivers, or only drivers on the suspect driver list. For 
a driver that is to be verified, the loader checks two lists of functions, MiVerifierThunks and 
MiVerifierPoolThunks, and if any of these functions are discovered whilst performing load time 
linking, then the alternate version that provides the spurious input is linked to instead. Currently 
functions related to event handling, the acquisition of mutexes and resources, memory mapping 
and locking, IRQ levels, synchronization, certain I/O manager functions, file access, and memory 
allocation and de-allocation, are targeted by the verifier. This allows the verifier to do things such 
as simulate low-memory availability conditions, check for deadlocks on synchronization objects, 
or whether code is being called at the appropriate IRQL. 
 
Although this type of verification is useful for development, as with the Static Driver Verifier the 
potential results may not necessarily be helpful beyond finding potential denial-of-services. 
 
3.2.3 – Miscellaneous tools 
In addition to the more in-depth analysis tools outlined above, there are several small utilities 
targeted at providing technical information about operating system objects, and potentially 
manipulating or interacting with them. 
 
WinObj [21] allows a user to browse the kernel object directory, which contains not only folders 
for device and driver objects, thus allowing the assessment of the Access Control Lists for given 
devices to determine who can open them, but also contains object information for session specific 
devices, symbolic links, and file system filters. The BaseNamedObjects subdirectory also lists 
named jobs, sections, events, semaphores, mutants, and symbolic links. Process Explorer, also 
from Sysinternals, can be used to provide a quick overview of how the user mode components of 
an application communicate with the kernel mode components by listing what open file handles, 
sections, tokens, and mutants, along with their associated ACLs. 
 
NtDispatchPoints [3] is a quick tool to check what IRP functions some device, found for example 
with WinObj, supports. This can help narrow down areas to target in a binary, but will not help 
finding all the potential entry points into the kernel mode code. A similarly interesting tool that can 
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be useful for quickly finding potential attack vectors is the RootKit Hook Analyzer [20] 
(resplendence) that will determine of there are any system service table hooks, and can fuzz 
them if asked to. However, the author is unaware of any tools that can find deeper hooks within 
the kernel and fuzz them, such as hooks targeted at the dispatch functions of a DriverObject. 
 
There is certainly a great deal of scope for other tools in this area to help automate the 
determination of potential attack vectors as well as their investigation. 
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4 – Defensive measures 
 
Relying on the traditional monolithic architecture for an operating system kernel with the kernel 
mapped into every process’s address space will always raise security issues; even though the 
parameter validation of the NT kernel itself has greatly improved since the time of NtCrash, and 
APIs have either been restricted in their use or their functionality, the greatest security concern is 
still raised by third party code that either exposes kernel mode functionality and data to an 
unprivileged user or opens up security holes by being poorly coded. 
 
Applying an ACL to a device and running as a service under a different user certainly provides 
one method for restricting access, as does checking for privileges such as SeDebugPrivilege or 
SeTcbPrivilege; all of which uses the current NT architecture to enhance security. This does not 
solve the issue of parameter validation, which is a particularly thorny issue in the kernel – 
probably the best way to enhance parameter validation would be to be aware of the type of 
security issues involved, such as buffer overflows and arbitrary memory writes, and then design 
the code to be secure from the beginning; this should in principle minimize the appearance of 
pointers and buffer lengths being provided from user mode, and hopefully reduce the appearance 
of bugs due to unforeseen boundary conditions. 
 
Microsoft has attempted to exert greater control over approved third party code by introducing 
Kernel Mode Code Signing in Windows Vista that mandates digitally signed kernel code, and has 
also introduced PatchGuard on 64-bit versions of Windows to limit the modification of kernel code 
and data structures. This does not prevent hooking of certain kernel data structures though, most 
importantly the objects stored in the object directory (such as device, driver, or port objects) which 
still allows kernel functionality to be hooked and file system or network requests and responses to 
be modified as desired. 
 
Further than this, recent processor hardware developments have introduced virtualization 
technology to aid the execution of virtual machine technology. Running the most privileged part of 
the operating system as the hypervisor (above the supervisor) could allow the operating system 
to exert control over the behaviour of the supervisor; much has been said on this topic with 
respect to malware. Though perhaps tempting, a much simpler solution is provided by employing 
a microkernel (especially as a hypervisor may just be a microkernel beneath the supervisor). 
 
In addition, the approach taken by the team developing the research OS Singularity could be 
taken – Singularity is written largely in an extension of C# (named Sing#) as a strongly typed 
microkernel (though some of the kernel code is not type-safe). All code runs in supervisor mode, 
removing the need to transfer buffers between user and kernel mode thus improving speed and 
security, and uses strong typing and code verification to try and ensure code correctness. 
Isolation between processes is maintained by software and not by hardware, such as having a 
different virtual address space or running in a different segment; communication is performed 
through contract-based channels; and all programs are manifest-based, thus allowing control of 
what code is executed within each process. 
 
Although Singularity is currently only a research project within Microsoft, it and other microkernels 
being used or developed do indicate a desire to attempt to address some of the challenges in 
operating system design that have until recently been overlooked by the acceptance of the 
original OS development work carried out in the 1960’s and 1970’s.
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5 – Further work 

 
Manually auditing kernel code, especially in a black box situation, can be considerably time-
consuming; there is a great deal of work that could be done to improve the automated 
assessment of kernel code. 

5.1 – Fuzzing 
As highlighted earlier, automated fuzzing of kernel code can be awkward due to a bugcheck 
halting the system, and then requiring further in-depth analysis to determine what occurred. Two 
fairly simple approaches could be used to help speed this process up – the use of a virtual 
machine, or the use of a hypervisor. 
 
The essence of either of these methods is to restore the operating system to a reliable state 
before fuzzing (it is also possible to modify the kernel itself to do this upon a bugcheck and 
restore from a memory image stored on disk, though this would not be a very pleasant solution, 
especially as the operating system may have become so corrupt that it cannot perform this). 
Setting up something like VMWare to enable this should be fairly trivial, but raises the problem of 
assessing drivers for real hardware, which thus cannot be installed in the virtual machine. Writing 
a hypervisor would be an expensive and time consuming task. 
 
Further than that, neither option helps with the location of entry points into the kernel, nor with any 
instrumentation to assess code coverage. Consequently, other solutions may prove more useful. 

5.2 – Automated bug finding 
Instead of relying on runtime analysis provided by fuzzing, it may be more productive to spend 
the time designing and implementing a static code analyzer. Either a source code analyzer (which 
would be language specific) or a binary analyzer (which would be architecture specific) could be 
useful. 
 
The author has a partial implementation of an x86 emulator designed for static code analysis. 
Rather than provide full emulation as Bochs [2] does for example, the emulator models inputs and 
outputs and attempts to perform the inverse of the code correctness verification that can be 
attempted through the use of a formal language – assuming arbitrary input, what ‘classes’ of input 
are accepted by the target code, and what are the resulting code-paths that are executed? 
Dealing with this at a binary level can be simpler as no concept of type exists, and certain issues 
such as improper sign checking can be more easily discovered. 
 
Schematically, any such tool along these lines could be though of as a ‘meta-fuzzer’ – all possible 
input is provided at the same time. Consequently, although the design and implementation would 
take longer than for a typical fuzzer, the results should be of a higher quality, with the added 
bonus of not needed to restart crashed process or analyze crash dumps. 
 
The design of such a tool does raise important issues – if all potential input is provided at the 
same time, then in principle every conditional jump may or may not be taken (though code could 
be written whereby specific conditional jumps are never taken). To maximize code coverage, the 
state at every conditional jump would need to be stored and if necessary linked to a parent state 
(if it is in a subfunction, for example). For a moderately sized piece of code, the amount of space 
required to store these states would very quickly become very large. 
 
This can be combated in two ways; firstly, a breadth-first based search could be used whereby 
subfunction calls are only followed to a certain depth, and their effect on the potential processor 
states available for processing assessed at a later time, thus allowing the narrowing down of 
areas of interest; secondly, a heuristic scan of the binary for areas that may be vulnerable, such 
as places in the code where unsafe string or memory operations are executed, and then a search 
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that does not require maintaining so much state information for code-paths to the specific areas in 
question. 
 
This also raises the possibility of using artificial intelligence techniques, such as example-based 
training, to create software that can discover bugs via static analysis, though it is debatable how 
much the security industry would trust such a tool. 

5.3 – Virtualization 
One of the major issues with fuzzing kernel code is that causing bugchecks greatly slows down 
the entire process. Although reverse engineering has been highlighted above, this can be an 
extremely time consuming process. Bugchecks are generated when the operating system 
assesses that it has been corrupted or can no longer continue to function correctly, for whatever 
reason. The simple solution to this problem is to run kernel mode code in user mode instead of 
supervisor mode. 
 
In principle there is no facet of the Windows NT architecture that prevents doing this, though it is 
not a trivial task. Essentially, the kernel execution environment must be ported over to user mode. 
The exported functions from the core kernel libraries (ntoskrnl, win32k, hal, and videoprt, 
depending on what is being assessed) need to be re-implemented where necessary in a manner 
that will function under user mode. The kernel exports a large number of runtime library functions 
that are also present in ntdll, and many of its exported functions can be called without any 
concern for whether the code is running in user or supervisor mode. There only remains to 
implement in a library those exported functions that are not compatible with user mode, and add 
any logging and tracing where necessary. 
 
With this in place, any kernel module can then be linked to the appropriate libraries so it will work 
in user mode, and can then be fuzzed as normal. Logging functionality can be added to any 
replacement routines so the creation of callbacks, shared memory, interfaces, and so forth, can 
all be logged, and the given entry points then fuzzed. It would also be fairly simple to add the 
ability to determine IOCTLs supported by a driver in an initial scanning phase. 
 
There still remain two problems with this solution – privileged and protected instructions, and 
drivers for real hardware. A generic exception handler, preferably a vectored exception handler 
as it is global to a process, could be used to trap all invalid instructions, as well as access 
violations, and process them as appropriate. Generally speaking, none of the protected or 
privileged instructions need to be executed when running kernel code in user mode, though if 
need be a driver could be written and used as a proxy for instructions such as in and out. Such 
a design would itself raise security concerns for flagrantly disregarding some of the coding 
principles discussed in this paper, but it would not be production code. 
 
A similar approach can also be taken with hardware, whereby a driver acts as a proxy between 
the driver running in user mode and the real hardware. This would be a difficult to implement 
though, and less preferable perhaps than implementing a generic virtual device. As the relevant 
structures have either been described above, or are documented elsewhere, provided the 
relevant areas of the code are found and the type of hardware resource being made available is 
known then it would not be overly difficult to create virtual resources and then call the appropriate 
functions from the driver to register them, and then call the related functions for fuzzing. This 
description does underplay the design issues involved and the amount of work necessary to 
implement such a tool. 
 
The author is currently working on both virtualization and automated static analysis. 
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6 – Conclusion 
The monolithic architecture for operating system kernels that has been inherited raises security 
issues that may be best addressed by trying different architectures. For the current, and by all 
appearances future, versions of the Windows NT operating system these issues will remain and 
will require the usual vigilance with respect to parameter validation and the exposure of 
supervisor functionality to user mode. 
 
With that in mind, and the effort that has been put into making the core components of the NT 
kernel more secure, the best targets by far will be third party drivers where there may be less of a 
concern over security as the vendors will most likely have received much less criticism over 
security issues than Microsoft traditionally has; and although developments like the Windows 
Driver Framework and the verification tools provided by Microsoft certainly make driver 
development easier and help to improve coding practice, they in no way guarantee that any code 
developed will be secure. 
 
Considering it is debatable how much effort is going into securing kernel code by third parties, 
there is certainly plenty of potential for further research and tool development in the area of kernel 
security, both from an attack and defense perspective. 
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A – Windows NT kernel architecture 

This Appendix will provide an overview of the relevant areas of the NT kernel architecture from 
the point of view of an attacker as well as highlighting any protection systems that may provide 
barriers. 

A.1 – Terminology 
For clarity, the meaning of several terms used will be outlined. In an effort to abstract away from 
specific processor architectures, terms such as ‘ring 0’ will not be used; having said that, the 
specifics of IA64 will not be dealt with. The meaning of standard terms such as ‘virtual address’ or 
‘page’ is assumed to be known and understood by the reader. 
 

� User mode: the normal execution mode implemented in processor hardware, whereby 
certain functionality and resources are restricted. 

� Supervisor mode: a privileged execution mode implemented in processor hardware 
where additional functionality is available for hardware management. 

� Kernel mode: in Windows kernel development documentation, this is used to refer to 
supervisor mode. In this paper, the terms ‘supervisor mode’ and ‘kernel mode’ are used 
interchangeably. 

� NT kernel: this is a vague term used cover the module providing the core supervisor 
routines (ntoskrnl.exe, ntkrnlmp.exe, and so forth), the module providing the Hardware 
Abstraction Layer (typically hal.dll), and various kernel mode support libraries and drivers. 
This is used in an attempt to distinguish the operating system supervisor mode kernel 
code from the user mode kernel code, as well as other supervisor code. 

A.2 – Hardware based protection 
Hardware based protection is architecture dependent, though there are several commonly used 
strategies, most of which are employed on most Windows operating systems. 
 
The distinction between user and supervisor mode allows for protected and privileged instructions 
– instructions that can only be executed in supervisor mode, or instructions that may be executed 
in user mode depending upon the processor configuration (for example, the in and out 
instructions on x86 processors) [7]. Beyond that, pages can be marked as supervisor only, in 
which case they cannot be accessed by code running in user mode. 
 
Memory is also typically protected with standard read/write settings, and some processor 
architectures may also support memory being marked as non-executable; and memory may have 
segment based protection where segments describe chunks of memory, and the privilege level 
needed to access them. 
 
Modern versions of Windows NT support and use all these protection mechanisms, aside from 
memory segmentation. NT uses a flat memory model for x86, whereby all segments start at 0 and 
have a 4GB limit. Memory segmentation has largely been dropped for x64, with the fs register 
being retained and used to point to the Thread Information Block. 
 
With this in mind, there needs to be one or more available methods for a thread of execution to 
transition between privilege levels. Descriptor tables can be, and are, used to define boundaries 
between different privilege levels – for example entries defining call and interrupt gates allow the 
privilege level required and the privilege level granted for interrupts and far calls or jumps to be 
specified, as well as the entry point for specific interrupts. More recent x86 processors introduced 
the sysenter and sysexit instructions which are programmable through Model Specific 
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Registers (accessible only from supervisor mode) that will quickly transition a thread from user 
mode to a specific location in supervisor mode and back. 

A.3 – Operating system memory layout and management 
The NT kernel resides in the system address space of the operating system, and as such is 
mapped into all user mode processes. The session space of the kernel contains session specific 
kernel code and data mapped in per session (of relevance in particular for display drivers). 
Typically for 32-bit versions of NT, the split between user and supervisor memory is made at 
0x80000000, though this can be configured to be otherwise where an application would gain from 
additional virtual address space. On 64-bit versions, the split is made at 0x80000000000. Pages 
above this boundary have the supervisor bit set so that they are inaccessible from user mode. 
 

As this page based protection is only relevant for attempted user mode access to supervisor 
memory, the supervisor must also initialize internal variables that will allow it to distinguish 
between data in the user mode address space as opposed to the supervisor address space. 
Under 32-bit NT, the following 5 variables (the three MmXxx variables being exported from the 
kernel) are used to delimit the UM address space, provided with their typical initialization values 
from XP SP2: 

 

Symbol Initialized value 

MmHighestUserAddress 0x7FFEFFFF 

MmUserProbeAddress 0x7FFF0000 

MmSystemRangeStart 0x80000000 

MiHighestUserPte 0xC01FFFBC 

MiHighestUserPde 0xC03007FC 

Table A.1 – some of the variables used to define memory usage for x86 NT 

 
Under 64-bit NT, these variables have the following values, though MmSystemRangeStart is no 
longer exported: 
 

Symbol Initialized value 

MmHighestUserAddress 0x7FFFFFEFFFF 

MmUserProbeAddress 0x7FFFFFF0000 
MmSystemRangeStart 0xFFFF080000000000 

Table A.2 – some of the variables used to define memory usage for x64 NT 

 
The page table data structure limit variables are necessarily expanded for 64-bit processors to 
allow for the additional translation layer for addresses 64-bits wide, and are also configured 
dynamically under Windows Vista. 
 

If it is not at first obvious why these boundaries must be defined in this way, then it is fairly simple: 
the services provided by the NT kernel can operate on data provided from user mode. It may be 
necessary for supervisor code to copy this data into memory allocated within the supervisor, often 
due to the NT kernel being designed as an asynchronous architecture, thus allowing kernel 
services to run in an arbitrary process context, in which case pointers into user mode memory 
may not be trusted. 
 
Communication with the NT kernel allows three different ways to access user mode memory: a 
Memory Descriptor List, which is a partially opaque structure used to describe chunks of memory 
that can be used with the Memory Manager in the NT kernel to lock pages from user mode into 
memory so that they will be available to the driver; via a system buffer, where the IO Manager 
allocates supervisor memory and copies the data to and from user mode; and finally via direct 
access to the user mode memory. 
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Both the second and third methods raise interesting issues: in the latter case, trusting pointers, 
structures and data directly from user mode; and in the former case – if the kernel has to copy 
data to and from user mode, then it must validate the buffers any user mode code provides for 
input and output. Typically this involves testing whether the memory is readable and/or writable, 
verifying the buffers are reasonably sized, and checking that they reside fully within the user 
mode address space by comparison with MmUserProbeAddress. This functionality is also 
provided to kernel modules via the ProbeForRead and ProbeForWrite NT kernel exports. The 
following code outlines how the I/O manager validates data from user mode, which is only 
executed if the function is not called directly from supervisor mode: 
 
IopXxxControlFile( 
    HANDLE FileHandle, 
    HANDLE Event, 
    PIO_APC_ROUTINE ApcRoutine, 
    PVOID ApcContext, 
    PIO_STATUS_BLOCK IoStatusBlock, 
    ULONG IoControlCode, 
    PVOID InputBuffer, 
    ULONG InputBufferLength, 
    PVOID OutputBuffer, 
    ULONG OutputBufferLength, 
    BOOLEAN DeviceIO 
    ) 
{ 
     
    try 
    { 
        if ((IoControlCode & 3) == METHOD_BUFFERED) 
        { 
            if (OutputBuffer != NULL) 
                ProbeForWrite(OutputBuffer, OutputBufferLength, 1); 
            else 
                OutputBufferLength = 0; 
         } 
 
         if (IoControlCode & 3 != METHOD_NEITHER) 
         { 
              if (InputBuffer != NULL) 
                    ProbeForRead(InputBuffer, InputBufferLength, 1); 
                else 
                    InputBufferLength = 0; 
         } 
    } 
    except(EXCEPTION_EXECUTE_HANDLER) 
    { 
            //handle the read or write exception 
    } 
 
    //dispatch the request appropriately 
} 
 
Thus, in principle, the user and supervisor address spaces are segregated. Further details of NT 
kernel memory management can be found in Windows Internals [22]. 

 



21 

A.4 – Public kernel interfaces 
As the kernel is designed to provide resource and operating system management functionality to 
user mode code, it must have defined interfaces to allow communication between user and 
supervisor code. 
 

A.4.1 – System calls 

The most well known and well investigated of these is the system call interface, whereby NT 
kernel functionality is exposed to user mode via particular instructions; for x86 NT, either int 2e 
handled by KiSystemService in the kernel, or sysenter handled by KiFastCallEntry, are used. 
Both of these functions provide initial validation, where necessary, and copy the arguments from 
the user mode to the kernel mode stack ready to be processed by the given function from either 
the specified function in the KiServiceTable table of pointers, or in the W32pServiceTable table 
from the supervisor portion of the GDI subsystem. 
 
Neither of these instructions is intended for direct use by third party user mode code, and instead 
this functionality is exposed via symbols in the user mode DLLs ntdll.dll and gdi32.dll. In recent 
builds based of the NT architecture for x86, such as XP SP2 or Vista, any system calls go via 
stub code in the SharedUserData area of memory mapped into all processes. The appropriate 
instruction to transition to the kernel is in this stub depending upon whether the processor 
supports sysenter or not. 
 

A.4.2 – Device drivers 

Device drivers are allowed to provide interfaces exposed to user mode to allow user mode code 
to interact by proxy with supervisor code, or hardware managed by supervisor code. When a 
driver is loaded and initialized, the entry point (typically some version of DriverEntry) is called and 
allows the driver to allocate and initialize resources and device specific data, register a callback 
for when devices are added for it to manage, and provide functions to the IO manager that will be 
called when the driver is requested to process some request. The kernel uses objects to describe 
kernel entities such as ports, devices, drivers, events, and so forth; function pointers, where 
needed, are stored within these objects. 
 
Internally, the IO manager uses data structures called IO Request Packets (IRPs) to pass 
requests to a driver. The particular fields of interest are as follows: 
 

� SystemBuffer – part of the AssociatedIrp union, used to point to the system buffer for 
buffered I/O 

� IoStatus – used to report the status of the request after processing 
� RequestorMode – indicates whether the IRP processing was requested from user or 

kernel mode 
� UserBuffer – pointer to the user supplied buffer, if present 
� CurrentStackLocation – part of the IRP Tail, and contains IRP specific information such 

as the major and minor IRP codes, as well as the IoControlCode if applicable 
 
The IRP dispatching routines are stored within the DriverObject during driver initialization. IRPs of 
interest to those wishing to break into the kernel are detailed in the following table, along with the 
user mode APIs that are will cause their generation: 
 

IRP Major code Win32 API Native API 
IRP IRP_MJ_CREATE CreateFile NtCreateFile 
IRP_MJ_CLOSE CloseHandle NtClose 
IRP_MJ_READ ReadFile NtReadFile 
IRP_MJ_WRITE WriteFile NtWriteFile 
IRP_MJ_DEVICE_CONTROL  DeviceIoControl NtDeviceIoControlFile 

Table A.3 – IRPs and their related user mode functions 
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When the driver is initialized, it can create a named device using IoCreateDevice, and then if 
need be create a symbolic link to this device for legacy DOS device support using 
IoCreateSymbolicLink. These can then be opened and operated upon as if they were files. 
DeviceIoControl is used for more sophisticated interaction with the device. 
 
It is also worth paying extra attention to 64-bit drivers as the 64-bit NT kernel does not support 
32-bit drivers, but the OS does support 32-but applications in a compatibility mode. Thus, any 
drivers must be able to distinguish between 32-bit and 64-bit processes interacting with it, by 
calling IoIs32-bitProcess, and transform the input from 32-bit to 64-bit before processing. This 
provides an additional area where bugs could be introduced into the code. 
 

A.4.3 – Display and display miniport drivers 

The display driver architecture is somewhat different from that of standard device drivers. 
Communication from user mode code is directed toward a display driver that exists in the kernel’s 
session space, and not system space. The driver therefore only links to other modules loaded in 
session space, typically just the exports from Win32k, though other modules can be and often are 
loaded for DirectX or OpenGL support. Requests are sent to the driver by calling the user mode 
APIs ExtEscape and DrawEscape. 
 

 
Figure A.1 – A schematic view of the GDI architecture 
 

However, display drivers do not register IRP handling functions as for standard drivers; in fact 
their initialization is entirely different. 
 
BOOL 

  DrvEnableDriver( 

    IN ULONG  iEngineVersion, 

    IN ULONG  cj, 

    OUT DRVENABLEDATA  *pded 

    ); 
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iEngineVersion and cj are used by the driver to identify and deal the version of the Graphics 
Device Interface (GDI) running on the system. pded points to a DRVENABLEDATA structure that 
is used to register function callbacks with GDI. Functions are indicated by index, and the 
functions exposed to user mode access are DrvEscape handling ExtEscape with an index of 24 
and DrvDrawEscape handling DrawEscape with an index of 25. 
 

int 

  ExtEscape( 

    HDC hdc, 

    int nEscape, 

    int cbInput, 

    LPCSTR lpszInData, 

    int cbOutput, 

    LPSTR lpszOutData 

  ); 
 
Of interest is the fact that data is dispatched differently to the display driver than in the case of 
standard drivers – if the input buffer is larger than 32 bytes in size then Win32k either allocates 
memory and copies the data across, or locks it in memory as PAGE_READONLY by calling 
MmSecureVirtualMemory; correspondingly, if the output buffer is larger than 32 bytes then it too 
is relocated to allocated pool memory. If either buffer is smaller than 32 bytes, then a buffer is 
allocated on the supervisor stack. This raises the possibility of a return pointer overwrite on the 
supervisor stack if there is poor input validation in the display driver. 
 
Some requests may be handled by Win32k itself, the rest being passed on to the appropriate 
display driver. The display driver can then either handle the request itself, or forward it onto the 
miniport driver for the particular display device by calling EngDeviceIoControl (presumably having 
verified parameters where needed). The miniport driver does not reside in session space, but in 
system space like most other drivers, and the entry point has a similar prototype. However, it 
handles Video Request Packets which are to some extent a stripped down version of IRPs. 
 
typedef struct _VIDEO_REQUEST_PACKET { 

  ULONG  IoControlCode; 

  PSTATUS_BLOCK  StatusBlock; 

  PVOID  InputBuffer; 

  ULONG  InputBufferLength; 

  PVOID  OutputBuffer; 

  ULONG  OutputBufferLength; 

} VIDEO_REQUEST_PACKET, *PVIDEO_REQUEST_PACKET; 

 
The miniport driver does not register VRP handling as standard drivers do by modifying their 
DriverObject, but instead by calling VideoPortInitialize exported by videoprt.sys. This registers the 
miniport driver with the framework provided mainly for handling hardware, initialization, and power 
events. The interface specified must also include HwVidStartIO which is the function responsible 
for processing any VRPs received. The miniport can then process these packets as appropriate, 
and then communicate with the underlying hardware if need be. 
 
A.4.4 – Shared memory sections 
Shared memory sections, created and mapped with NtCreateSection, NtOpenSection and 
NtMapViewOfSection are designed to allow (named) areas of memory to be shared between 
different contexts, and can be used to store shared information between processes or between 
user and kernel mode, or with some signaling mechanism (such as using an event and a 
semaphore) can be used to transfer data between processes or between user mode and kernel 
mode. 
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If a handle to an unnamed section is present in a process’s handle table, then it is possible to 
brute-force the handle in an attempt to open the section by attempting NtMapViewOfSection on 
all possible handles. 
 
A.4.5 – Ports 
The filtering framework provided in the NT kernel contains APIs to create and manage ports for 
communication between a filter driver and a user mode application. FltCreateCommunicationPort 
is used to create a port from kernel mode and specify the callback function to process requests 
from a user mode application. FltSendMessage is then used to send data back to the user mode 
application. User mode applications can use FilterConnectCommunicationPort, 
FilterSendMessage, FilterGetMessage, and FilterReplyMessage to interact with the port. 
 
NTSTATUS 
  FltCreateCommunicationPort( 
    IN PFLT_FILTER  Filter, 
    OUT PFLT_PORT  *ServerPort, 
    IN POBJECT_ATTRIBUTES  ObjectAttributes, 
    IN PVOID  ServerPortCookie OPTIONAL, 
    IN PFLT_CONNECT_NOTIFY  ConnectNotifyCallback, 
    IN PFLT_DISCONNECT_NOTIFY  DisconnectNotifyCallback, 
    IN PFLT_MESSAGE_NOTIFY  MessageNotifyCallback, 
    IN LONG  MaxConnections 
    );  
 
An object to represent the port is created by the Object Manager in the kernel, and added to the 
object directory. Internally, NtDeviceIoControlFile is used by the user mode filter library (fltlib.dll) 
to perform requests with the library waiting for the filter driver to respond. 
 
A.4.6 – Windows Driver Framework 
The Windows Driver Framework was introduced to simplify driver development, particularly things 
like power management. This framework is essentially a provided by two kernel modules: a 
loader that is directly linked to by a driver using the framework, and the framework provider. As 
these may be version specific, drivers written using the WDF must be created with a coinstaller 
that installs the required WDF components. 
 
Drivers written using WDF have their DriverEntry wrapped in WDF specific code that is 
responsible for binding to the correct version of the WDF library, and then calling the actual 
DriverEntry. This is achieved by calling WdfVersionBind in wdfldr.sys. This allows different 
version of the WDF to be present on the same system. The WdfVersionBind prototype is provided 
below: 
 
NTSTATUS 
  WdfVersionBind( 
    IN PDRIVER_OBJECT  DriverObject, 
  IN PUNICODE_STRING  RegistryPath, 

  IN PWDF_VERSION_INFO  WdfVersion, 

  IN P WdfDriverGlobals 

  ); 
Unbinding on driver unloading is also handled internally by the framework. WdfDriverGlobals is 
used as a hidden parameter to all WDF functions (namely, a driver developer does not have to 
specify it, it is automatically added during compilation) and allows the WDF library to determine 
which particular driver it is dealing with; internally it is a pointer to an object that is inserted into a 
linked list that contains internal support routines and a pointer to the original DriverObject. The 
WDF_VERSION_INFO structure is outlined below, and contains a pointer to a table that will be 
filled out by the WDF loader with the requisite functions from the requisite WDF library. 
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typedef struct _WDF_VERSION_INFO { 

  ULONG  Size 
  PWSTR  LibraryName 
  ULONG  WdfMajorVersion 
  ULONG  WdfMinorVersion 
  ULONG  WdfBuildNumber 
  ULONG  NumWdfFunctions 
  PVOID  WdfFunctions 
} WDF_VERSION_INFO, *PWDF_VERSION_INFO; 
 

The WdfFunctions pointer is to a table (of at least size NumWdfFunctions) that is filled out by the 
specified WDF library with all the WDF routines. These are the typical WDF routines that are then 
called by the code written by the driver author. 
 
Beyond this architectural change to the original WDM, Microsoft has greatly simplified the model 
used to write drivers. The IRP handling functions are filled out by the framework library itself, and 
dealt with as appropriate. So, instead of modifying the DriverObject directly as previously, the 
driver registers unload and device addition functions by calling WdfDriverCreate: 
 
NTSTATUS 

  WdfDriverCreate( 

    IN PDRIVER_OBJECT  DriverObject, 

    IN PUNICODE_STRING  RegistryPath, 

    IN OPTIONAL PWDF_OBJECT_ATTRIBUTES  DriverAttributes, 

    IN PWDF_DRIVER_CONFIG  DriverConfig, 

    OUT OPTIONAL WDFDRIVER*  Driver 

    ); 

 

Here, DriverConfig contains the pointers to the requisite functions: 
 
typedef struct _WDF_DRIVER_CONFIG { 

  ULONG  Size; 

  PFN_WDF_DRIVER_DEVICE_ADD  DriverDeviceAdd; 

  PFN_WDF_DRIVER_UNLOAD  DriverUnload; 

  ULONG  DriverInitFlags; 

  ULONG  DriverPoolTag; 

} WDF_DRIVER_CONFIG, *PWDF_DRIVER_CONFIG; 

 
Create and close request callbacks can be created by calling WdfDeviceInitSetFileObjectConfig. 
Other I/O operations are managed via I/O queues for specific devices. These are created by 
calling WdfIoQueueCreate: 
 
NTSTATUS 

  WdfIoQueueCreate( 

   IN WDFDEVICE  Device, 

   IN PWDF_IO_QUEUE_CONFIG  Config, 

   IN OPTIONAL PWDF_OBJECT_ATTRIBUTES  QueueAttributes, 

   OUT WDFQUEUE*  Queue 

   ); 

 

In this case, the optional WDF_IO_QUEUE_CONFIG structure will contain the interesting function 
pointers: 
 
typedef struct _WDF_IO_QUEUE_CONFIG { 
  ULONG  Size; 
  WDF_IO_QUEUE_DISPATCH_TYPE  DispatchType; 
  WDF_TRI_STATE  PowerManaged; 
  BOOLEAN  AllowZeroLengthRequests; 
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  BOOLEAN  DefaultQueue; 
  PFN_WDF_IO_QUEUE_IO_START  IoDefault; 
  PFN_WDF_IO_QUEUE_IO_READ  IoRead; 
  PFN_WDF_IO_QUEUE_IO_WRITE  IoWrite; 
  PFN_WDF_IO_QUEUE_IO_DEVICE_CONTROL  EvtIoDeviceControl; 
  PFN_WDF_IO_QUEUE_IO_INTERNAL_DEVICE_CONTROL IoInternalDeviceControl; 
  PFN_WDF_IO_QUEUE_IO_STOP  IoStop; 
  PFN_WDF_IO_QUEUE_IO_RESUME  IoResume; 
  PFN_WDF_IO_QUEUE_IO_CANCELED_ON_QUEUE  IoCanceledOnQueue; 
} WDF_IO_QUEUE_CONFIG, *PWDF_IO_QUEUE_CONFIG; 
 

If implemented, the EvtIoDeviceControl routine will process DeviceIoControl calls from user mode 
code. Individual I/O queues can be configured with WdfDeviceConfigureRequestDispatching to 
allow processing of different requests; this method can be called multiple times for the same 
queue to configure it to receive one or more of the following request types, corresponding to the 
functions provided in the WDF_IO_QUEUE_CONFIG structure: 
 
WdfRequestTypeCreate 
WdfRequestTypeRead 
WdfRequestTypeWrite 
WdfRequestTypeDeviceControl 
WdfRequestTypeDeviceControlInternal 
 
So, though the WDF provides a simpler model for development, the layers added do make 
analyzing WDF drivers slightly more time consuming, though it would not be particularly difficult to 
create tools to aid in the automated analysis of such drivers. 
 
A.4.7 – Kernel mode callbacks 
Recent iterations of the NT architecture, particularly from XP onwards have introduced specific 
callbacks (though a general callback interface is available via ExCreateCallback and 
ExRegisterCallback). Process and executable image related callbacks can be registered through 
the Process manager (PsSetCreateProcessNotifyRoutine, PsSetCreateThreadNotifyRoutine, and 
PsSetLoadImageNotifyRoutine), registry related callbacks can be registered through the 
configuration manager (CmRegisterCallback and CmRegisterCallbackEx), and file system 
filtering through the runtime file system support (FsRtlRegisterFileSystemFilterCallbacks). 
 
All of these callbacks provide an opportunity for an unprivileged user to provide arbitrary data to 
some supervisor code (within reason). 
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B – CDFS driver disassembly 

 
The following example code is taken from the CDFS driver provided in the current release of the 
WDK (version 6000), thus allowing the reader to correlate the disassembly with the related 
source code should they so desire. The first section is from the DriverEntry routine: 
 

; int __stdcall DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath) 

 

DeviceName= LSA_UNICODE_STRING ptr -0Ch 

DeviceObject= dword ptr -4 

DriverObject= dword ptr  8 

 

        mov     edi, edi 

        push    ebp 

        mov     ebp, esp 

        sub     esp, 0Ch 

        push    esi 

        push    offset Cdfs                                            ; SourceString 

        lea     eax, [ebp+DeviceName] 

        push    eax                                                    ; DestinationString 

        call    ds:__imp__RtlInitUnicodeString@8                       ; RtlInitUnicodeString 

        mov     esi, [ebp+DriverObject] 

        lea     eax, [ebp+DeviceObject] 

        push    eax                                                    ; DeviceObject 

        push    0                                                      ; Exclusive 

        push    0                                                      ; DeviceCharacteristics 

        push    3                                                      ; DeviceType 

        lea     eax, [ebp+DeviceName] 

        push    eax                                                    ; DeviceName 

        push    0                                                      ; DeviceExtensionSize 

        push    esi                                                    ; DriverObject 

        call    ds:__imp__IoCreateDevice@28                            ; IoCreateDevice 

        test    eax, eax 

        jl      loc_1DFD1                                              ; Continue if we haven't failed  

        mov     eax, offset CdFsdDispatch                              ; to create the associated 

        push    edi                                                    ; device object. 

        push    [ebp+DeviceObject] 

        mov     dword ptr [esi+34h], offset CdUnload 

        mov     [esi+0A4h], eax                                        ; Fill out the supported  

        mov     [esi+_DRIVER_OBJECT.IrpCleanupDispatch], eax           ; functions in the driver's  

        mov     [esi+_DRIVER_OBJECT.IrpLockControlDispatch], eax       ; dispatch table. 

        mov     [esi+_DRIVER_OBJECT.IrpDeviceControlDispatch], eax     

        mov     [esi+_DRIVER_OBJECT.IrpFileSystemControlDispatch], eax  

        mov     [esi+_DRIVER_OBJECT.IrpDirectoryControlDispatch], eax 

        mov     [esi+_DRIVER_OBJECT.IrpQueryVolumeInformationDispatch], eax 

        mov     [esi+_DRIVER_OBJECT.IrpSetInformationDispatch], eax 

        mov     [esi+_DRIVER_OBJECT.IrpQueryInformationDispatch], eax 

        mov     [esi+_DRIVER_OBJECT.IrpReadDispatch], eax 

        mov     [esi+_DRIVER_OBJECT.IrpCloseDispatch], eax 

        mov     [esi+_DRIVER_OBJECT.IrpCreateDispatch], eax 

        mov     dword ptr [esi+78h], offset CdShutdown 

        mov     dword ptr [esi+28h], offset CdFastIoDispatch 

        call    ds:__imp__IoRegisterShutdownNotification@4             ;IoRegisterShutdownNotification 

        push    [ebp+DeviceObject]                                     ; DeviceObject 

        mov     edi, eax 

        test    edi, edi 

        jge     short loc_1DF99 

        call    ds:__imp__IoDeleteDevice@4                             ; IoDeleteDevice 

        mov     eax, edi 

        jmp     short loc_1DFD0 

; --------------------------------------------------------------------------- 

loc_1DF99:                                                             

        push    esi 

        call    CdInitializeGlobalData                                 ; Check the global data was 

        mov     esi, eax                                               ; initialized ok, otherwise 

        test    esi, esi                                               ; delete the device and return 

        jge     short loc_1DFB2                                        ; the error code. 

  

With the correct structures available, it is a very quick and easy task to spot any potential ways to 
access this code from user mode: it registers several dispatch routines, including one to handle 
DeviceIoControl requests, it registers as a file system driver, and the function 
CdInitializeGlobalData(DriverObject) fills out the fast I/O dispatch routines. 
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Dispatch routines receive a pointer to the associated DEVICE_OBJECT and a pointer to the IRP 
that requires processing. For the CDFS example, all supported IRP functions are handled by a 
generic dispatch handler, as can be seen from the disassembly above. Internally to this generic 
dispatch function, CdCreateIrpContext is called passing in the IRP as a parameter. Memory is 
allocated and useful information extracted from the IRP: 
 
CdCreateIrpContext proc near                                          

 

 IRP            = dword ptr  8 

 bSynchronous   = byte ptr  0Ch 

 

         mov     edi, edi 

         push    ebp 

         mov     ebp, esp 

         mov     eax, [ebp+IRP]                                         ; Get the DriverObject 

         push    esi 

         push    edi 

         mov     edi, [eax+60h]                                         ; Get the CurrentStackLocation  

         mov     eax, [edi+14h]                                         ; from the IRP, and then  

         cmp     eax, DeviceObject                                      ; the associated DeviceObject 

         jnz     short loc_1C531 

         cmp     dword ptr [edi+18h], 0                                 ; If they’re not the same, 

         jz      short loc_1C531                                        ; check there’s no FileObject 

         mov     al, [edi] 

         test    al, al 

         jz      short loc_1C531                                        ; If there is, check it’s an 

         cmp     al, 12h                                                ; IRP for IRP_MJ_CLEANUP, 

         jz      short loc_1C531                                        ; IRP_MJ_CREATE, IRP_MJ_CLOSE 

         cmp     al, 2 

         jz      short loc_1C531 

         push    0C0000010h                                            ; Status 

         call    ds:__imp__ExRaiseStatus@4                             ; ExRaiseStatus 

 loc_1C531: 

 
Some initial preprocessing is done to validate the request. Of particular interest is the 
IO_STACK_LOCATION structure retrieved from IRP.Tail.CurrentStackLocation – this 
contains some IRP specific request information, such as the IRP major and minor codes, though 
the contents are specific to the different IRP_MJ_X requests. For example, the 
CurrentStackLocation for IRP_MJ_DEVICE_CONTROL is defined as follows: 
 
typedef struct _IO_STACK_LOCATION { 

  UCHAR  MajorFunction; 

  UCHAR  MinorFunction; 

  UCHAR  Flags; 

  UCHAR  Control; 

 

  struct  { 

    ULONG  OutputBufferLength; 

    ULONG  POINTER_ALIGNMENT  InputBufferLength; 

    ULONG  POINTER_ALIGNMENT  IoControlCode; 

    PVOID  Type3InputBuffer; 

  } DeviceIoControl; 

         

  PDEVICE_OBJECT  DeviceObject; 

  PFILE_OBJECT  FileObject; 

  PIO_COMPLETION_ROUTINE  CompletionRoutine; 

  PVOID  Context; 

} IO_STACK_LOCATION, *PIO_STACK_LOCATION; 
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loc_1C57D:                                                             

         push    'cidC'                                                ; Tag 

         push    38h                                                   ; NumberOfBytes 

         push    10h                                                   ; PoolType 

         call    ds:__imp__ExAllocatePoolWithTag@12                    ; ExAllocatePoolWithTag 

         mov     esi, eax 

 loc_1C58E:                                                             

         push    38h                                                   ; size_t 

         push    0                                                     ; int 

         push    esi                                                   ; void * 

         call    _memset                                               ; Zero the allocated memory 

         mov     eax, [ebp+IRP] 

         mov     word ptr [esi], 308h                                  ; Initialize the context  

         mov     word ptr [esi+2], 38h                                 ; structure 

         mov     [esi+4], eax                                          ; Store the IRP pointer 

         mov     eax, [edi+18h] 

         add     esp, 0Ch 

         test    eax, eax                                              ; If there is an associated 

         jz      short loc_1C5B9                                       ; FileObject, then store its 

         mov     eax, [eax+4]                                          ; DeviceObject 

         mov     [esi+14h], eax 

 loc_1C5B9:                                                             

         mov     eax, [edi+14h] 

         cmp     eax, DeviceObject 

         jz      short loc_1C5CC 

         add     eax, 0D0h 

         mov     [esi+8], eax 

 loc_1C5CC:                                                             

         cmp     [ebp+bSynchronous], 0 

         mov     al, [edi]                                             ; Get the IRP major code 

         mov     [esi+20h], al 

         mov     al, [edi+1]                                           ; And the minor code 

         mov     [esi+21h], al                                          

         jz      short loc_1C5E3 

         or      dword ptr [esi+10h], 4                                ; Set whether it’s synchronous 

         jmp     short loc_1C5E7                                       ; or not 

 ; --------------------------------------------------------------------------- 

 loc_1C5E3:                                                             

         or      dword ptr [esi+10h], 8 

 loc_1C5E7:                                                             

         pop     edi 

         mov     eax, esi 

         pop     esi 

         pop     ebp 

         retn    8 

 CdCreateIrpContext endp 

 
Of note is that the memory allocation above is not checked as having succeeded before the 
memory is zeroed. This could lead to a bugcheck in severely low-memory situations, where a 56 
byte allocation may fail. Having processed the IRP in this manner, the major code stored in the 
context is then used in a switch statement to determine which internal function should process the 
IRP; all IRP processing functions take the IRP and the constructed context as parameters, thus 
allowing the I/O operations to be asynchronous. In this case, of interest is the function to handle 
IRP_MJ_DEVICE_CONTROL: 
 
CdCommonDevControl proc near                                           

 

 var_4   = dword ptr -4 

 Context = dword ptr  8 

 IRP     = dword ptr  0Ch 

 

         mov     edi, edi 

         push    ebp 

         mov     ebp, esp 

         push    ecx 

         push    ebx 

         mov     ebx, [ebp+IRP] 

         push    esi 

         mov     esi, [ebx+60h] 

         push    edi 

         mov     edi, [ebp+Context] 

         lea     eax, [ebp+var_4] 

         push    eax 

         lea     eax, [ebp+IRP] 

         push    eax 

         push    dword ptr [esi+18h]                                   ; Get and decode the FileObject 

         push    edi 
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         call    CdDecodeFileObject 

         cmp     eax, 2 

         jz      short loc_15745 

         mov     esi, 0C000000Dh                                       ; Check it’s a valid request 

 loc_15739:                                                             

         push    esi 

         push    ebx 

         push    edi 

         call    CdCompleteRequest                                     ; Complete if invalid 

         mov     eax, esi 

         jmp     short loc_15799 

 ; --------------------------------------------------------------------------- 

 loc_15745:                                                            ; Get the IoControlCode from                                       

         mov     eax, [esi+0Ch]                                        ; IRP.Tail.CurrentStackLocation 

         cmp     eax, 24000h                                           ; and check if it is 0x24000 

         jnz     short loc_157A0                                    

         mov     eax, [ebp+IRP] 

         push    dword ptr [eax+40h] 

         push    edi 

         call    CdVerifyVcb                                           ; Verify the Volume Control 

 loc_1575B:                                                            ; and proceed with the request 

         mov     edi, [ebx+60h] 

         push    9 

         sub     edi, 24h 

         pop     ecx 

         rep movsd 

         mov     eax, [ebx+60h] 

         mov     esi, [ebp+Context] 

         sub     eax, 24h 

         mov     dword ptr [eax+1Ch], offset CdDevCtrlCompletionRoutine 

         xor     edi, edi 

         mov     [eax+20h], edi 

         mov     byte ptr [eax+3], 0E0h 

         mov     eax, [esi+8] 

         mov     ecx, [eax+8] 

         mov     edx, ebx 

         call    ds:__imp_@IofCallDriver@8                             ; Forward the request down the 

         push    edi                                                   ; device stack 

         push    edi 

         push    esi 

         mov     ebx, eax 

         call    CdCompleteRequest 

         mov     eax, ebx 

 loc_15799:                                                             

         pop     edi 

         pop     esi 

         pop     ebx 

         leave 

         retn    8 

 ; --------------------------------------------------------------------------- 

 loc_157A0:                                                            

         cmp     eax, 20040h                                           ; Check if the IoControlCode is 

         jnz     short loc_1575B                                       ; 0x20040, and if it isn’t then 

         mov     eax, [ebp+IRP]                                        ; forward the request 

         push    dword ptr [eax+40h] 

         push    edi 

         call    CdVerifyVcb                                           ; Verify and proceed with the 

         push    4                                                     ; request 

         pop     eax 

         cmp     [esi+4], eax 

         jnb     short loc_157C5 

         mov     esi, 0C0000023h 

         jmp     loc_15739 

 ; --------------------------------------------------------------------------- 

 loc_157C5:                                                             

         mov     ecx, [ebp+IRP]                                        ; For this IOCTL, the request 

         mov     ecx, [ecx+40h]                                        ; is not forwarded 

         mov     ecx, [ecx+13Ch] 

         mov     edx, [ebx+0Ch] 

         push    0 

         push    ebx 

         mov     [edx], ecx 

         push    edi 

         mov     [ebx+1Ch], eax 

         call    CdCompleteRequest 

         xor     eax, eax 

         jmp     short loc_15799 

 CdCommonDevControl endp 
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As can be seen from the above disassembly, the CDFS driver only supports two IOCTLs itself, 
and processing of those IOCTLs is not complicated. However, the principle is the same for drivers 
irrespective of their complexity: if IRPs are handled in a generic dispatch routine then most likely 
a switch statement will be used to call the appropriate dispatch handler. Useful parameters are 
retrieved from the IRPs CurrentStackLocation structure. Within the 
IRP_MJ_DEVICE_CONTROL function, a switch statement can be used to process the 
IoControlCode and hand off the IRP to the relevant control function, provided there are 
enough IOCTLs supported. 
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C – Real world examples 

The Uninformed assessment of Kaspersky Internet Security Suite 5 and McAfee Internet Security 
Suite 2006 [24] provides an excellent example of assessing vulnerabilities in the kernel 
components of two anti-virus products, and the ‘Microsoft Windows kernel GDI local privilege 
escalation’ [6] found during the ‘Month of Kernel Bugs’ is also an interesting case in point. This 
section will provide several other real world examples of either architectural flaws or coding bugs, 
along with a quick overview of how they could be exploited; the three final examples have been 
modified to protect the indigent. 

C.1 – The NT kernel compression library 
The runtime library provided by the NT operating system contains support for compression in 
both user mode and kernel mode. The functions exported from the NT kernel are as follows, with 
an example function prototype: 
 
RtlCompressBuffer 
RtlCompressChunks 
RtlDecompressBuffer 
RtlDescribeChunk 
RtlDecompressChunks 
RtlDecompressFragment 
RtlGetCompressionWorkSpaceSize 
RtlReserveChunk 
 
NTSTATUS 

RtlCompressBuffer ( 

    IN USHORT   CompressionFormatAndEngine, 

    IN PUCHAR   UncompressedBuffer, 

    IN ULONG    UncompressedBufferSize, 

    OUT PUCHAR  CompressedBuffer, 

    IN ULONG    CompressedBufferSize, 

    IN ULONG    UncompressedChunkSize, 

    OUT PULONG  FinalCompressedSize, 

    IN PVOID    WorkSpace 

); 

 
For all these functions, the parameter of interest is CompressionFormat or 
CompressionFormatAndEngine. Internally, this is used as an index into a table of pointers to 
the actual compression, decompression, or support routine. Currently in all versions of the NT 
kernel the first two pointers are NULL, and are never supposed to be used; the third pointer is to 
functions providing LZ compression support; the following five functions all return 
STATUS_UNSUPPORTED_COMPRESSION. Thus there are in principle eight pointers in the 
table. 
 
However, the code that uses CompressionFormat or CompressionFormatAndEngine as an 
index checks that the index is neither zero nor one, thus avoiding a NULL pointer dereference, 
but only checks that the index is between 0 and 15 beyond that. Therefore it is possible to treat 
some of the code or data immediately after the pointer table as function pointers. If the code or 
data after the table can be interpreted as a pointer into the user mode portion of the address 
space, then this bug in principle allows user mode code to be called directly from kernel mode. 
The following disassembly is taken from the Windows Vista x64 RTM ntoskrnl.exe:
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RtlGetCompressionWorkSpaceSize proc near 

         sub     rsp, 28h 

         test    cl, cl 

         movzx   r9d, cl 

         jz      short loc_140200E76    ; Check the index is not zero 

         cmp     r9w, 1 

         jz      short loc_140200E76    ; Check the index is not one 

         test    r9b, 0F0h 

         jz      short loc_140200E60    ; Check the index is less than 0x10 

         mov     eax, 0C000025Fh 

         jmp     short loc_140200E7B 

 ; --------------------------------------------------------------------------- 

 loc_140200E60:                           

         movzx   eax, r9w 

         lea     r9, RtlWorkSpaceProcs 

         and     cx, 0FF00h             ; Mask off the format, and leave only the compression level 

         call    qword ptr [r9+rax*8]   ; Call the relevant function from the table 

         jmp     short loc_140200E7B 

 ; --------------------------------------------------------------------------- 

 loc_140200E76:                           

         mov     eax, 0C000000Dh 

 loc_140200E7B:                           

         add     rsp, 28h 

         retn 

 RtlGetCompressionWorkSpaceSize endp 

 

 

 RtlWorkSpaceProcs dq 0                   

         dq 0 

         dq offset RtlCompressWorkSpaceSizeLZNT1 

         dq offset RtlReserveChunkNS 

         dq offset RtlReserveChunkNS 

         dq offset RtlReserveChunkNS 

         dq offset RtlReserveChunkNS 

         dq offset RtlReserveChunkNS 

 LZNT1Formats dq 0F00000FFFh             ; With the above code, all the following quadwords 

         dq 1000001002h                  ; can be treated as function pointers 

         dq 7FF0000000Ch 

         dq 8020000001Fh 

         dq 0B00000020h 

         dq 3F000003FFh 

         dq 4000000402h 

         dq 1FF0000000Ah 

 
The question then raised is can this code path be executed whereby the input is controlled by an 
unprivileged user. The compression APIs are only used by two drivers on a default installation of 
an NT based system – the SMB driver and the NTFS driver. The SMB driver strictly controls the 
CompressionFormat and it always uses a value of 2 (COMPRESSION_FORMAT_LZNT1). 
The NTFS driver uses these APIs to support file and folder compression; whether a file is 
compressed or not is stored in what is referred to as the Flags element of the attribute header of 
any non-resident NTFS file record attribute by the Linux NTFS project documentation [10]. 
 
During compression or decompression by the driver, the Flag value is incremented and passed in 
as the CompressionFormat. It is not verified as being within the acceptable range, so there is 
now a potential code path to allow the exploitation of this bug. Seeing as the specific version of 
the core NT kernel binary loaded can easily be determined (whether ntoskrnl, ntkrnlmp, and so 
forth), and the correct image can be mapped into a user mode process thus allowing the pointers 
that could be dereferenced to be discovered by searching through the APIs that could be hit (in 
this case RtlGetCompressionWorkSpaceSize, RtlCompressBuffer, and RtlDecompressBuffer). 
 
Thus it is possible to reliably determine if there are pointers into the user mode address space, 
and exactly what they are. There is an issue raised by which process context the pointer will be 
dereferenced in; as the NT kernel is asynchronous (even though it exposes synchronous 
functionality to user mode) lower level IRP processing may occur in arbitrary process contexts, in 
which case it cannot be guaranteed that the pointer will be dereferenced within the context of a 
process that the user controls. Two ways around this present themselves – either raise the 
priority of the target process as high as possible, or inject code at the required address into all the 
processes present on the system. Both of these would require elevated privileges. 
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The compression state of a file can be controlled by using DeviceIoControl on a handle to the file, 
specifying FSCTL_SET_COMPRESSION as the control code. However, the NTFS driver 
validates that the compression type supplied is one that is currently supported, so the Flag cannot 
be set to a bad value through this method. Since the Master File Table used to describe the file 
and folder layout under NTFS is itself just a file, it can be located easily on disk either by checking 
the Master Boot Record or by opening a handle to ‘$MFT’ with no access rights and using 
DeviceIoControl with a control code of FSCTL_GET_RETRIEVAL_POINTERS. 
 
The MFT can then be parsed, and a suitable file that is already compressed can be located, and 
its Flag element can be updated directly on disk. This obviously requires administrator privileges 
to perform the raw write to disk, and some effort must be made to deal with issues raised with 
respect to the Cache Manager. As disk access is cached by the Cache Manager, any raw writes 
to the MFT will leave the on disk data inconsistent with the cached data in memory. This will be a 
problem if the file has just been created, in which case it’s entry in the MFT will most likely be in 
the cache. There are also two methods that can be used to deal with this – either attempt to force 
the cache to empty by allocating and using large amounts of memory, or by dismounting the 
target volume. 
 
This could be used by removable media, whereby it is considerably easier to create a malformed 
file record with the potential to trigger the bug upon insertion of the media. This still requires 
physical access (at least of a sort), and administrator privileges are required to perform raw disk 
writes, with the consequence that this is not considered to be a security issue by Microsoft. 
 
This bug is of interest because it is in code that is as old as the NT kernel itself, and raises the 
question of what other legacy kernel code in Windows NT has not had sufficient scrutiny. Another 
case in point is MmGetSystemRoutineAddress, whereby the search algorithm can cause an 
access violation with specific input; this only raises a security issue if it is directly exposed to user 
mode, for example by an anti-root kit scanner driver that exposed such kernel mode functionality 
to a user mode process, and the issue has been fixed in builds of the NT OS from Windows 
Server 2003 Service Pack 1 onwards. 

C.2 – Unvalidated structure initialization 
The following code is used by a device driver to initialize a data structure on behalf of either 
another driver or a user mode process, being processed by the driver’s DispatchDeviceControl 
routine. The address of the structure to be initialized and the size of it are controlled by the caller, 
so can be controlled from user mode. The parameters are not validated before some are used, so 
it is possible to zero an arbitrary area of memory and then have the function fail and exit 
gracefully. 
 
pdataBuffer= dword ptr  8 

Structure= dword ptr  0Ch 

Count   = dword ptr  10h 

 

         push    ebp 

         mov     ebp, esp 

         sub     esp, 444h 

         mov     edx, [ebp+Count] 

         mov     eax, [ebp+pdataBuffer] 

         push    ebx 

         mov     ecx, edx 

         mov     ebx, ecx 

         shr     ecx, 2 

         push    esi 

         mov     esi, [ebp+Structure]    ; Get the address of the structure to initialize 

         push    edi 

         mov     [ebp+var_400], eax 

         xor     eax, eax 

         mov     edi, esi 

         rep stosd                       ; Zero out the contents 

         mov     ecx, ebx 

         and     ecx, 3 

         rep stosb 

         lea     eax, [edx-2C0h] 
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         xor     edx, edx 

         mov     ecx, 2B8h 

         div     ecx                     ; Work out how many entries we can have 

         xor     ecx, ecx 

         cmp     esi, ecx 

         mov     [ebp+var_404], esi 

         lea     ebx, [esi+8] 

         mov     [ebp+var_408], eax 

         jz      InvalidParameter 

         cmp     [ebp+Count], ecx 

         jz      InvalidParameter 

         cmp     eax, ecx 

         jz      InvalidParameter 

         mov     eax, [ebp+var_400] 

         cmp     eax, ecx 

         jz      InvalidParameter 

         cmp     word ptr [eax], 4       ; Seeing as we control this pointer, we can leave this  

         jnz     InvalidParameter        ; function now, with some arbitrary data buffer having 

         mov     eax, [eax+4]            ; been zeroed 

         cmp     eax, ecx 

         mov     [ebp+var_3F0], eax 

         jz      SizeOk 

         mov     [ebp+var_3F8], ebx 

         jmp     UseMaxSize 

 
The parameters used are taken without sufficient validation from the input buffer provided to 
DeviceIoControl. This particular issue could be used to overwrite a function pointer, provided a 
suitable pointer can be located, bearing in mind that if that pointer is then dereferenced in a 
different context then the kernel will bugcheck. It would also be possible to overwrite entries in the 
GDT, LDT, or IDT. 
 
Pointers that are supposed to be in the user mode portion of the virtual address space can be 
validated as such by using ProbeForRead or ProbeForWrite. However, if the pointer can 
legitimately be to a virtual address in the kernel mode portion of the address space, for example if 
it is to process data on behalf of another driver, then an awkward problem is raised as there is no 
programmatic way to verify if the address is valid – the address must be trusted. Driver 
developers have sometimes resorted to using MmIsAddressValid  to try and validate a pointer; 
however, the name of the routine is somewhat of a misnomer and it is only intended for internal 
use by the Memory Manager as it only returns a Boolean indicated whether access of the 
specified address will cause a page fault or not. As such, in general use, a page may have been 
swapped in or out by the Memory Manager between this function being called and any 
subsequent use of the address. 
 
At any rate, if the driver is only supposed to process data from another driver, then the value of 
RequestorMode in the IRP to be processed is KernelMode (0). 

C.3 – An architectural flaw 
Where the previous two examples highlighted poor input validation and a coding error, this 
example will highlight what appears to be an architectural flaw. The following code exposed by 
this particular driver’s DispatchDeviceControl routine allows the memory at an arbitrary address 
to be overwritten with an arbitrary buffer, thus allowing an unprivileged user to overwrite kernel 
code or data structures. 
 
The code that ends up calling the following code verifies that the buffer passed in from user mode 
is writeable, but performs no further validation of the data passed in. The buffer is then passed 
down to a routine that then processes the buffer passed in. The first DWORD in the buffer 
provides the function code, which is then used as an index into a jump table to select the 
appropriate function to further process the buffer; a snippet from one of the functions is provided: 
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SourceDescriptor   = dword ptr  8 

Function           = dword ptr  0Ch 

Destination        = dword ptr  10h 

DestinationSize    = dword ptr  14h 

 

         push    ebx 

         mov     ebx, [esp+Function] 

         cmp     ebx, MEMORY_OPERATION         ; Check if it is a memory operation 

         push    ebp 

         mov     ebp, [esp+4+SourceDescriptor] ; Get a pointer to the source buffer descriptor 

         jnz     short NoAddress 

         mov     ebx, [ebp+4]                  ; Get the source start address 

 NoAddress:                               

         mov     eax, [ebp+8] 

         mov     edx, [eax] 

         test    edx, edx                      ; Check that the buffer offset is non-zero 

         jz      short InvalidParameter 

         test    ebx, ebx                      ; Check the source buffer is a user mode address 

         jl      short InvalidParameter 

         mov     eax, [eax+4]                  ; Get the source end address 

         cmp     eax, ebx 

         jb      short InvalidParameter        ; Check the end is after the start 

         mov     ecx, [esp+4+DestinationSize] 

         sub     eax, ebx 

         cmp     eax, ecx                      ; Make sure that the copy will not overflow the buffer 

         jb      short SizeOk 

         mov     eax, ecx                      ; Set the copy size to the size of the destination 

 SizeOk:                               

         test    eax, eax 

         jz      short RequestProcessed        ; Make sure we are copying some bytes 

         push    esi 

         push    edi 

         mov     edi, [esp+0Ch+Destination]    ; Destination address is an arbitrary address passed in 

         mov     ecx, eax                      ; from the user supplied buffer 

         lea     esi, [edx+ebx]                ; Address the relevant part of the target buffer 

         shr     ecx, 2 

         rep movsd                             ; DWORD aligned copy 

         mov     ecx, eax 

         and     ecx, 3 

         rep movsb                             ; Copy the remaining bytes 

         pop     edi 

         pop     esi 

         jmp     short RequestProcessed        ; And we’re done 

 

In this instance a somewhat complicated data structure is passed in, used to describe a particular 
subfunction to execute, and the parameters of the source buffer to be used. As there is no 
verification beyond the fact that the two buffers exist (source and destination), and that the source 
buffer has an end address higher than the start address, it is trivial for an unprivileged user to 
pass in a suitably crafted structure to overwrite an arbitrary area of memory with whatever they 
want. 
 
This presents a more serious issue than the previous examples as it is completely reliable, and 
raises no issues with respect to being run in an arbitrary context, or only being able to write 
zeroes. As such, this can be used to overwrite a function pointer within the kernel so that it points 
to a user mode address, which would allow successful exploitation of this type of issue even on 
64-bit versions of Windows. 

C.4 – Trusting user input 
The following is a code snippet from a large and complex driver that can perform complicated 
data processing, and as such the bug took quite a lot of time reverse engineering the binary to 
find. It is another example of trusting a pointer that is controllable by a user, and presents 
somewhat more interesting challenge in terms of exploitation than the previous example. 
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SubFunction:                               

         test    esi, esi                      ; Check it is a valid handle 

         jz      InvalidParameter 

         test    ebp, ebp                      ; Check we have a non-NULL input buffer pointer 

         jz      InvalidParameter 

         mov     edi, [esp+9Ch+OutBuffer] 

         test    edi, edi                      ; Check we have a non-NULL output buffer pointer 

         jz      InvalidParameter 

         cmp     edx, 20h                      ; Check the size of the input buffer is 0x20 

         jnz     InvalidParameter 

         cmp     edx, ecx                      ; Check the output buffer is the same size 

         jnz     InvalidParameter 

         mov     eax, [ebp+0Ch] 

         test    eax, eax                      ; Verify the user controlled function index 

         jz      short DefaultOp 

         cmp     eax, 7Fh 

         jbe     short ValidOp 

         cmp     eax, 87h 

         ja      short ValidOp 

         mov     ecx, [ebp+10h]                ; Get a user controlled pointer from the input buffer 

         lea     eax, [esp+9Ch+var_80]         ; Address part of the thread’s kernel mode stack 

         cdq                                   ; This will set edx to 0xffffffff 

         mov     dword ptr [ebp+0Ch], 0FFh 

         mov     [ecx], eax                    ; Write the sign-extended stack address to the user 

         mov     [ecx+4], edx                  ; specified buffer 

         jmp     short ValidOp 

 ; --------------------------------------------------------------------------- 

 DefaultOp:                              

         mov     dword ptr [ebp+0Ch], 41h 

 ValidOp:                               

         mov     edx, [ebp+10h] 

         mov     eax, [ebp+0Ch] 

 
The input and output buffers for all functions that use them are carefully validated before their use 
by the driver. However, in this case it is taking a user-controlled pointer and trusting that it is valid. 
This provides an eight byte overwrite but the target data will be over-written by a sign extended 
kernel stack address. As the value written to that address on the stack is not controllable by the 
user and attempting to execute at 0xffffffff will cause a bugcheck there is no point in trying to use 
this to overwrite the kernel stack pointer (as information about the kernel stack is disclosed by the 
bug). Overwriting a function pointer would be useless for exactly the same reason. 
 
This leaves two options – either overwrite a pointer such as MmUserProbeAddress thus breaking 
the user-mode buffer verification provided by ProbeForRead and so forth, or overwrite an object 
pointer in pool memory with 0xffffffff with the result that any function pointers within that object will 
be dereferenced via a base address of 0xffffffff, with the result that they will be read from 
somewhere at the bottom of the user mode address space, and will be controllable by the user. 
 
The difficulty with the second route is that it would require further information disclosure via 
reading arbitrary kernel memory addresses to find a suitable function pointer in pool memory; this 
would most likely rely on different bug within the same driver, or another vulnerability within the 
system. Thus, overwriting something like MmUserProbeAddress would be the easiest option, 
though the author has experienced stability issues when doing this under the 32-bit version of 
Windows Vista. 
 
This particular case highlights the difficulty faced by using an approach purely based on fuzzing – 
for a fuzzer to hit this bug in a reasonable amount of time it would require a solid grasp of the 
data structures being used and what they are being used for to avoid situations where enormous 
amounts of test cases are generated yet the vast majority will be automatically rejected by the 
validation code within the driver. On the other hand, this particular driver highlights the usefulness 
of a smart fuzzer. Provided the data structures are described in suitable detail, and are fuzzed 
appropriately, fuzzing the code would be considerably quicker than manual examination due to 
the vast amount of functionality exposed by the driver. 


